Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 14(3): 487-497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38268325

RESUMO

Citrobacter braakii (C. braakii) is an anaerobic, gram-negative bacterium that has been isolated from the environment, food, and humans. Infection by C. braakii has been associated with acute mucosal inflammation in the intestine, respiratory tract, and urinary tract. However, the pathogenesis of C. braakii in the gastric mucosa has not yet been clarified. In this study, the bacterium was detected in 35.5% (61/172) of patients with chronic gastritis (CG) and was closely associated with the severity of mucosal inflammation. Citrobacter braakii P1 isolated from a patient with CG exhibited urease activity and acid resistance. It contained multiple secretion systems, including a complete type I secretion system (T1SS), T5aSS and T6SS. We then predicted the potential pilus-related adhesins. Citrobacter braakii P1 diffusely adhered to AGS cells and significantly increased lactate dehydrogenase (LDH) release; the adhesion rate and LDH release were much lower in HEp-2 cells. Strain P1 also induced markedly increased mRNA and protein expression of IL-8 and TNF-α in AGS cells, and the fold increase was much higher than that in HEp-2 cells. Our results demonstrate proinflammatory and cytotoxic role of C. braakii in gastric epithelial cells, indicating the bacterium is potentially involved in inducing gastric mucosa inflammation.


Assuntos
Citrobacter , Estômago , Humanos , Inflamação
2.
Front Pharmacol ; 14: 1045997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201028

RESUMO

Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.

3.
Animals (Basel) ; 13(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36978638

RESUMO

The goal of this study was to determine the net energy (NE) value of wheat for growing ducks and establish a NE prediction equation based on the grain's chemical composition. Forty wheat samples were selected based on bulk weight from major wheat-producing regions in China. A total of 460 1-week-old ducks (initial body weight (BW): 134.86 ± 3.32 g) were randomly assigned to 46 diets, including a basal diet, 5 restricted feeding diets and 40 test diets. Each diet contained five replicates, each with two ducks. The basic diet was a corn-soybean meal, and 40 kinds of experimental diets were prepared by mixing the basic diet with 20% wheat. A prediction equation for the NE concentration was created using the chemical make-up of wheat samples. The results indicated that the NE and apparent metabolism energy (AME) content of 40 wheat samples ranged from 6.81 to 9.12 MJ/kg and from 11.03 to 14.34 MJ/kg, respectively. The ether extract (EE), neutral detergent fiber (NDF), acid detergent fiber (ADF) and AME were highly correlated with NE value (p < 0.01), with the AME and NE showing the strongest correlation (r = 0.884). Chemical features could be used to predict the NE values with accuracy, and the prediction equation was strengthened by the inclusion of the AME. The best-fit equation was as follows: NE = 0.380 AME - 0.147 NDF - 0.274 ADF + 5.262 (R2 = 0.874, RSD = 0.19, p < 0.001). In summary, the NE value of wheat is 8.49 ± 0.30 MJ/kg for growing ducks, and the chemical composition can be used to accurately predict NE in wheat.

4.
World J Gastrointest Oncol ; 15(2): 276-285, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36908320

RESUMO

Genetic variations are associated with individual susceptibility to gastric cancer. Recently, polygenic risk score (PRS) models have been established based on genetic variants to predict the risk of gastric cancer. To assess the accuracy of current PRS models in the risk prediction, a systematic review was conducted. A total of eight eligible studies consisted of 544842 participants were included for evaluation of the performance of PRS models. The overall accuracy was moderate with Area under the curve values ranging from 0.5600 to 0.7823. Incorporation of epidemiological factors or Helicobacter pylori (H. pylori) status increased the accuracy for risk prediction, while selection of single nucleotide polymorphism (SNP) and number of SNPs appeared to have little impact on the model performance. To further improve the accuracy of PRS models for risk prediction of gastric cancer, we summarized the association between gastric cancer risk and H. pylori genomic variations, cancer associated bacteria members in the gastric microbiome, discussed the potentials for performance improvement of PRS models with these microbial factors. Future studies on comprehensive PRS models established with human SNPs, epidemiological factors and microbial factors are indicated.

5.
Arch Biochem Biophys ; 737: 109552, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828260

RESUMO

Upon ER stress, IRE1α is activated to splice XBP1 mRNA to generate XBP1s, a transcription factor that induces the expression of genes to cope with the stress. Expression of IRE1α is elevated in cancers and the IRE1α-XBP1s axis plays an important role in proliferation of cancer cells. However, the underlying mechanism is not well known. We found that ER stressors induced the expression of IRE1α, which was inhibited by depletion of XBP1s. XBP1s bound IRE1α promoter and initiated the transcription of IRE1α. These data indicate that XBP1s acts as a transcription factor of IRE1α. Overexpression of XBP1s increased the phosphorylation of JNK, a substrate of IRE1α kinase, which was inhibited by IRE1α kinase inhibitor Kira8. Overexpression of XBP1s also activated the regulated IRE1-dependent decay of mRNAs, which was suppressed by IRE1α RNase inhibitor STF083010. Moreover, we found that expression of XBP1s promoted proliferation of colon cancer cells, which was abrogated by Kira8 and STF083010. The results suggest that XBP1s functions to induce IRE1α expression and promote cancer cell proliferation. Our findings reveal a previously unknown mechanism of IRE1α expression by XBP1s and highlight the role of this regulation in proliferation of colon cancer cells, suggesting that IRE1α-targeting is a potential therapeutic strategy for colon cancer.


Assuntos
Neoplasias do Colo , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Endorribonucleases , Proliferação de Células , Estresse do Retículo Endoplasmático , Proteína 1 de Ligação a X-Box/metabolismo
6.
Front Immunol ; 14: 1307985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187401

RESUMO

Inflammatory bowel disease (IBD) is a term encompassing a few chronic inflammatory disorders that leads to damage of the intestinal tract. Although much progress has been made in understanding the pathology of IBD, the precise pathogenesis is not completely understood. Circular RNAs (circRNAs) are single-stranded, covalently closed, endogenous molecules in eukaryotes with a variety of biological functions. CircRNAs have been shown to have regulatory effects in many diseases, such as cancer, cardiovascular disease, and neurological disorders. CircRNAs have also been found to play important roles in IBD, and although they are not sufficiently investigated in the context of IBD, a few circRNAs have been identified as potential biomarkers for the diagnosis and prognosis of IBD and as potential therapeutic targets for IBD. Herein, we survey recent progress in understanding the functions and roles of circRNAs in IBD and discuss their potential clinical applications.


Assuntos
Doenças Cardiovasculares , Doenças Inflamatórias Intestinais , Humanos , RNA Circular/genética , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética
7.
World J Gastrointest Oncol ; 14(9): 1844-1855, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36187384

RESUMO

BACKGROUND: Genetic variants of Helicobacter pylori (H. pylori) are involved in gastric cancer occurrence. Single nucleotide polymorphisms (SNPs) of H. pylori that are associated with gastric cancer have been reported. The combined effect of H. pylori SNPs on the risk of gastric cancer remains unclear. AIM: To assess the performance of a polygenic risk score (PRS) based on H. pylori SNPs in predicting the risk of gastric cancer. METHODS: A total of 15 gastric cancer-associated H. pylori SNPs were selected. The associations between these SNPs and gastric cancer were further validated in 1022 global strains with publicly available genome sequences. The PRS model was established based on the validated SNPs. The performance of the PRS for predicting the risk of gastric cancer was assessed in global strains using quintiles and random forest (RF) methods. The variation in the performance of the PRS among different populations of H. pylori was further examined. RESULTS: Analyses of the association between selected SNPs and gastric cancer in the global dataset revealed that the risk allele frequencies of six SNPs were significantly higher in gastric cancer cases than non-gastric cancer cases. The PRS model constructed subsequently with these validated SNPs produced significantly higher scores in gastric cancer. The odds ratio (OR) value for gastric cancer gradually increased from the first to the fifth quintile of PRS, with the fifth quintile having an OR value as high as 9.76 (95% confidence interval: 5.84-16.29). The results of RF analyses indicated that the area under the curve (AUC) value for classifying gastric cancer and non-gastric cancer was 0.75, suggesting that the PRS based on H. pylori SNPs was capable of predicting the risk of gastric cancer. Assessing the performance of the PRS among different H. pylori populations demonstrated that it had good predictive power for cancer risk for hpEurope strains, with an AUC value of 0.78. CONCLUSION: The PRS model based on H. pylori SNPs had a good performance for assessment of gastric cancer risk. It would be useful in the prediction of final consequences of the H. pylori infection and beneficial for the management of the infection in clinical settings.

8.
Nat Commun ; 13(1): 5700, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171212

RESUMO

Given the complex nature of ulcerative colitis, combination therapy targeting multiple pathogenic genes and pathways of ulcerative colitis may be required. Unfortunately, current therapeutic strategies are usually based on independent chemical compounds or monoclonal antibodies, and the full potential of combination therapy has not yet been realized for the treatment of ulcerative colitis. Here, we develop a synthetic biology strategy that integrates the naturally existing circulating system of small extracellular vesicles with artificial genetic circuits to reprogram the liver of male mice to self-assemble multiple siRNAs into secretory small extracellular vesicles and facilitate in vivo delivery siRNAs through circulating small extracellular vesicles for the combination therapy of mouse models of ulcerative colitis. Particularly, repeated injection of the multi-targeted genetic circuit designed for simultaneous inhibition of TNF-α, B7-1 and integrin α4 rapidly relieves intestinal inflammation and exerts a synergistic therapeutic effect against ulcerative colitis through suppressing the pro-inflammatory cascade in colonic macrophages, inhibiting the costimulatory signal to T cells and blocking T cell homing to sites of inflammation. More importantly, we design an AAV-driven genetic circuit to induce substantial and lasting inhibition of TNF-α, B7-1 and integrin α4 through only a single injection. Overall, this study establishes a feasible combination therapeutic strategy for ulcerative colitis, which may offer an alternative to conventional biological therapies requiring two or more independent compounds or antibodies.


Assuntos
Colite Ulcerativa , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/terapia , Inflamação/genética , Integrina alfa4 , Masculino , Camundongos , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/uso terapêutico
9.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1417-1427, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664059

RESUMO

Cancer cells are often exposed to cell intrinsic stresses and environmental perturbations that may lead to accumulation of unfolded and/or misfolded proteins in the lumen of endoplasmic reticulum (ER), a cellular condition known as ER stress. In response to ER stress, the cells elicit an adaptive process called unfolded protein response (UPR) to cope with the stress, supporting cellular homeostasis and survival. The ER stress sensors inositol requiring protein 1α (IRE1α), eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, also called PERK), and activating transcription factor 6 (ATF6) constitute the three branches of UPR to resolve ER stress. IRE1α, PERK, and ATF6 play an important role in tumor cell growth and survival. They are also involved in chemotherapy resistance of cancers. These have generated widespread interest in targeting these UPR branches for cancer treatment. In this review, we provide an overview of the role of IRE1α, PERK, and ATF6 in cancer progression and drug resistance and we summarize the research advances in targeting these UPR branches to enhance the efficacy of chemotherapy of cancers.


Assuntos
Fator 6 Ativador da Transcrição/genética , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endorribonucleases/genética , Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , eIF-2 Quinase/metabolismo
10.
Biochem Biophys Res Commun ; 563: 1-7, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34052504

RESUMO

The SH2 domain-containing phosphatase 2 (SHP2) is a widely expressed protein tyrosine phosphatase, and it is proposed to act as an oncogenic protein. SHP2 is also engaged in drug resistance of a variety of cancers. However, the role of SHP2 in the proliferation and drug resistance of colon cancer cells remains elusive. In this work we determined the effect of SHP2 expression on colon cancer cell proliferation and resistance to oxaliplatin (L-OHP), a commonly used drug in the clinic. Our results show that knockdown of SHP2 decreased and overexpression of SHP2 increased the proliferation of SW480 cells, respectively. Knockdown of SHP2 increased, and overexpression of SHP2 decreased apoptosis of the cells. We selected oxaliplatin-resistant SW480(SW480/L-OHP) and HCT116(HCT116/L-OHP) cells and found that the SHP2 protein level was raised in these drug-resistant cells. The upregulated SHP2 contributed to oxaliplatin resistance of the cells, as knockdown of SHP2 decreased the IC50 of oxaliplatin and abated proliferation and survival of SW480/L-OHP and HCT116/L-OHP cells in the presence of oxaliplatin. Also, SW480/L-OHP and HCT116/L-OHP cells had increased phosphorylation of AKT and ERK. Inhibition of AKT, ERK, or SHP2 sensitized SW480/L-OHP and HCT116/L-OHP cells to oxaliplatin. Our results indicate that SHP2 contributes oxaliplatin resistance through AKT and ERK. These results also suggest that SHP2-targeting is a potential strategy for overcoming oxaliplatin resistance of colon cancer cells.


Assuntos
Neoplasias do Colo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Oxaliplatina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores
11.
Int J Biochem Cell Biol ; 135: 105982, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894356

RESUMO

The hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are dioxygenases using oxygen and 2-oxoglutarate as co-substrates. Under normoxia, PHDs hydroxylate the conserved prolyl residues of HIFα, leading to HIFα degradation. In hypoxia PHDs are inactivated, which results in HIFα accumulation. The accumulated HIFα enters nucleus and initiates gene transcription. Many studies have shown that PHDs have substrates other than HIFα, implying that they have HIF-independent non-canonical functions. Besides modulating protein stability, the PHDs-mediated prolyl hydroxylation affects protein-protein interaction and protein activity for alternative substrates. Increasing evidence indicates that PHDs also have hydroxylase-independent functions. They influence protein stability, enzyme activity, and protein-protein interaction in a hydroxylase-independent manner. These findings highlight the functional diversity and complexity of PHDs. Due to having inhibitory activity on HIFα, PHDs are proposed to act as tumor suppressors. However, research shows that PHDs exert either tumor-promoting or tumor-suppressing features. Here, we try to summarize the current understanding of PHDs hydroxylase-dependent and -independent functions and their roles in cancer.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Animais , Humanos , Hidroxilação , Neoplasias/metabolismo
12.
Cell Res ; 31(6): 631-648, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782530

RESUMO

RNAi therapy has undergone two stages of development, direct injection of synthetic siRNAs and delivery with artificial vehicles or conjugated ligands; both have not solved the problem of efficient in vivo siRNA delivery. Here, we present a proof-of-principle strategy that reprogrammes host liver with genetic circuits to direct the synthesis and self-assembly of siRNAs into secretory exosomes and facilitate the in vivo delivery of siRNAs through circulating exosomes. By combination of different genetic circuit modules, in vivo assembled siRNAs are systematically distributed to multiple tissues or targeted to specific tissues (e.g., brain), inducing potent target gene silencing in these tissues. The therapeutic value of our strategy is demonstrated by programmed silencing of critical targets associated with various diseases, including EGFR/KRAS in lung cancer, EGFR/TNC in glioblastoma and PTP1B in obesity. Overall, our strategy represents a next generation RNAi therapeutics, which makes RNAi therapy feasible.


Assuntos
Glioblastoma , Terapêutica com RNAi , Inativação Gênica , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética
13.
PLoS One ; 16(2): e0245832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529238

RESUMO

HER2 amplification greatly contributes to the tumorigenesis of multiple cancers. Intronic miR-4728-5p is transcribed along with its host gene HER2. However, little is known about the role of miR-4728-5p in cancer. This study aims to elucidate the potential role of miR-4728-5p and the underlying mechanism in breast cancer. Kaplan-Meier analysis showed that higher expression of HER2 led to worse survival outcomes in breast cancer patients. The TCGA dataset revealed that compared to normal breast tissues, HER2 and miR-4728-5p levels were significantly upregulated in breast cancer tissues with a positive correlation. In functional assays, miR-4728-5p was confirmed to promote the proliferation and migration in breast cancer cell BT474. EBP1 was identified as a direct target of miR-4728-5p via bioinformatics and luciferase reporter assays. miR-4728-5p was further demonstrated to increase HER2 expression and promote cell proliferation and migration by directly inhibiting EBP1 in breast cancer. Taken together, the HER2-intronic miR-4728-5p/EBP1/HER2 feedback loop plays an important role in promoting breast cancer cell proliferation and migration. Our study provides novel insights for targeted therapies of breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Íntrons/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Receptor ErbB-2/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Humanos , Estimativa de Kaplan-Meier , Células MCF-7
14.
Biosens Bioelectron ; 155: 112107, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32090872

RESUMO

Human papillomavirus (HPV) is one of the most common sexually transmitted infections worldwide, and persistent HPV infection can cause warts and even cancer. Nucleic acid analysis of HPV viral DNA can be very informative for the diagnosis and monitoring of HPV. Digital nucleic acid analysis, such as digital PCR and digital isothermal amplification, can provide sensitive detection and precise quantification of target nucleic acids, and its utility has been demonstrated in many biological research and medical diagnostic applications. A variety of methods have been developed for the generation of a large number of individual reaction partitions, a key requirement for digital nucleic acid analysis. However, an easily assembled and operated device for robust droplet formation without preprocessing devices, auxiliary instrumentation or control systems is still highly desired. In this paper, we present a self-partitioning SlipChip (sp-SlipChip) microfluidic device for the slip-induced generation of droplets to perform digital loop-mediated isothermal amplification (LAMP) for the detection and quantification of HPV DNA. In contrast to traditional SlipChip methods, which require the precise alignment of microfeatures, this sp-SlipChip utilized a design of "chain-of-pearls" continuous microfluidic channel that is independent of the overlapping of microfeatures on different plates to establish the fluidic path for reagent loading. Initiated by a simple slipping step, the aqueous solution can robustly self-partition into individual droplets by capillary pressure-driven flow. This advantage makes the sp-SlipChip very appealing for the point-of-care quantitative analysis of viral load. As a proof of concept, we performed digital LAMP on a sp-SlipChip to quantify human papillomaviruses (HPVs) 16 and 18 and tested this method with fifteen anonymous clinical samples.


Assuntos
Técnicas Biossensoriais , Papillomaviridae , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Carga Viral/métodos , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microfluídica/métodos , Testes Imediatos
15.
Carbohydr Polym ; 230: 115573, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887939

RESUMO

Many kinds of multi-drug-resistant microorganisms have appeared. Moreover, monotherapy is increasingly no longer adequate for many complicated bacterial infections. Therefore, development of efficient combination antibacterial agent is becoming crucial. Herein, we present a hybrid antibacterial agent with enhanced antibacterial activity and high aqueous dissolubility based on silver nanoparticles and curcumin. The silver nanoparticles were firstly synthesized using oxidized amylose as an environmentally friendly reducing agent and stabilizer. Then, curcumin was added into the above mixture to get the hybrid antibacterial agent. The hybrid antibacterial agent presented high dissolubility in aqueous solution and enhanced antibacterial activity. In addition, the hybrid antibacterial agent presented good antioxidant activity and cell compatibility. Overall, the developed hybrid antibacterial agent has a potential to combat multiple bacteria-induced infections of wound surfaces.


Assuntos
Amilose/química , Curcumina/farmacologia , Nanopartículas Metálicas/química , Infecção dos Ferimentos/tratamento farmacológico , Amilose/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Curcumina/química , Humanos , Testes de Sensibilidade Microbiana , Oxirredução , Prata/química , Espectrofotometria Ultravioleta , Infecção dos Ferimentos/microbiologia
16.
J Cell Biochem ; 121(8-9): 3871-3881, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31693229

RESUMO

Colorectal cancer (CRC) is a type of malignant cancer that has become particularly prevalent worldwide. It is of crucial importance to CRC treatment that the underlying molecular mechanism of CRC progression is determined. The NRAS gene is an important small G protein that is involved in various biological processes, including cancers. NRAS is an oncogene in many neoplasms but its function and regulation in CRC have seldom been investigated. In this study, it was uncovered that the NRAS protein was significantly upregulated in CRC tissues. According to a bioinformatics prediction, we identified that miR-144 may target NRAS to suppress its expression. In vitro experiments indicated that miR-144 decreased NRAS expression in different CRC cell lines (SW480, LoVo, and Caco2). By inhibiting NRAS, miR-144 repress SW480 cell proliferation and migration. Moreover, miR-144 decelerated the growth of SW480 xenograft tumors in vivo by targeting NRAS. In summary, our results identified a novel miR-144-NRAS axis in CRC that could promote the research and treatment of CRC.

17.
Langmuir ; 36(2): 585-590, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31886674

RESUMO

Microparts with precise sizes, custom shapes, and a wide selection of materials have various applications, including biomedical microelectromechanical systems (MEMS), drug delivery, single-cell studies, and tissue engineering. Janus microparts containing multiple components are also demonstrated for biomolecule analysis, cell-cell interaction studies, and self-assembly. Small-footprint, affordable, and rapid technologies to fabricate microparts with customized morphologies and a wide selection of materials are highly desired. This paper reports on a SlipChip-based microfluidic molding method to control the interface for the synthesis of microparts-on-demand (mPods) with fast and easy loading-slipping-solidification operations that do not require pumps, masks, or other auxiliary fluidic control instruments. This method is based on the relative movement of two microfluidic plates that are in close contact, and the size and shape of the microparts can be accurately controlled by the geometry of the microcavities imprinted on the contacting surfaces of these microfluidic plates. To demonstrate the capability of this method, mPods of different sizes and various shapes are presented with photosensitive resin via a photopolymerization reaction. The synthesis of two-layer Janus microparts is also demonstrated by a slip overmolding method. This SlipChip-based molding method can offer new opportunities for producing customized microparts with great flexibility for a broad spectrum of applications.

18.
Biomicrofluidics ; 13(4): 041502, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31312285

RESUMO

Slip-driven microfluidic devices can manipulate fluid by the relative movement of microfluidic plates that are in close contact. Since the demonstration of the first SlipChip device, many slip-driven microfluidic devices with different form factors have been developed, including SlipPAD, SlipDisc, sliding stripe, and volumetric bar chart chip. Slip-driven microfluidic devices can be fabricated from glass, quartz, polydimethylsiloxane, paper, and plastic with various fabrication methods: etching, casting, wax printing, laser cutting, micromilling, injection molding, etc. The slipping operation of the devices can be performed manually, by a micrometer with a base station, or autonomously, by a clockwork mechanism. A variety of readout methods other than fluorescence microscopy have been demonstrated, including both fluorescence detection and colorimetric detection by mobile phones, direct visual detection, and real-time fluorescence imaging. This review will focus on slip-driven microfluidic devices for nucleic acid analysis, including multiplex nucleic acid detection, digital nucleic acid quantification, real-time nucleic acid amplification, and sample-in-answer-out nucleic acid analysis. Slip-driven microfluidic devices present promising approaches for both life science research and clinical molecular diagnostics.

19.
Anal Chem ; 91(14): 8751-8755, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31117407

RESUMO

Serial dilution is a commonly used technique that generates a low-concentration working sample from a high-concentration stock solution and is used to set up screening conditions over a large dynamic range for biological study, optimization of reaction conditions, drug screening, etc. Creating an array of serial dilutions usually requires cumbersome manual pipetting steps or a robotic liquid handling system. Moreover, it is very challenging to set up an array of serial dilutions in nanoliter volumes in miniaturized assays. Here, a multistep SlipChip microfluidic device is presented for generating serial dilution nanoliter arrays in high throughput with a series of simple sliding motions. The dilution ratio can be precisely predetermined by the volumes of mother microwells and daughter microwells, and this paper demonstrates devices designed to have dilution ratios of 1:1, 1:2, and 1:4. Furthermore, an eight-step serial dilution SlipChip with a dilution ratio of 1:4 is applied for digital loop-mediated isothermal amplification (LAMP) across a large dynamic range and tested for hepatitis B viral load quantification with clinical samples. With 64 wells of each dilution and fewer than 600 wells in total, the serial dilution SlipChip can achieve a theoretical quantification dynamic range of 7 orders of magnitude.


Assuntos
Vírus da Hepatite B/isolamento & purificação , Hepatite B/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Carga Viral/instrumentação , Hepatite B/sangue , Humanos , Dispositivos Lab-On-A-Chip
20.
Gigascience ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715292

RESUMO

BACKGROUND: The Southern Ocean is the coldest ocean on Earth but a hot spot of evolution. The bottom-dwelling Eocene ancestor of Antarctic notothenioid fishes survived polar marine glaciation and underwent adaptive radiation, forming >120 species that fill all water column niches today. Genome-wide changes enabling physiological adaptations and the rapid expansion of the Antarctic notothenioids remain poorly understood. RESULTS: We sequenced and compared 2 notothenioid genomes-the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni and the basal Patagonian robalo Eleginops maclovinus, representing the temperate ancestor. We detected >200 protein gene families that had expanded and thousands of genes that had evolved faster in the toothfish, with diverse cold-relevant functions including stress response, lipid metabolism, protein homeostasis, and freeze resistance. Besides antifreeze glycoprotein, an eggshell protein had functionally diversified to aid in cellular freezing resistance. Genomic and transcriptomic comparisons revealed proliferation of selcys-transfer RNA genes and broad transcriptional upregulation across anti-oxidative selenoproteins, signifying their prominent role in mitigating oxidative stress in the oxygen-rich Southern Ocean. We found expansion of transposable elements, temporally correlated to Antarctic notothenioid diversification. Additionally, the toothfish exhibited remarkable shifts in genetic programs towards enhanced fat cell differentiation and lipid storage, and promotion of chondrogenesis while inhibiting osteogenesis in bone development, collectively contributing to the achievement of neutral buoyancy and pelagicism. CONCLUSIONS: Our study revealed a comprehensive landscape of evolutionary changes essential for Antarctic notothenioid cold adaptation and ecological expansion. The 2 genomes are valuable resources for further exploration of mechanisms underlying the spectacular notothenioid radiation in the coldest marine environment.


Assuntos
Peixes/genética , Genoma , Genômica , Adaptação Fisiológica , Animais , Regiões Antárticas , Evolução Biológica , Biologia Computacional/métodos , Curadoria de Dados , Meio Ambiente , Peixes/classificação , Congelamento , Perfilação da Expressão Gênica , Genômica/métodos , Anotação de Sequência Molecular , Osteogênese , Filogenia , Transcriptoma , Vertebrados , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...